Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae.

نویسندگان

  • Saumitri Bhattacharyya
  • Michael L Rolfsmeier
  • Michael J Dixon
  • Kara Wagoner
  • Robert S Lahue
چکیده

Trinucleotide repeats (TNRs) undergo frequent mutations in families affected by TNR diseases and in model organisms. Much of the instability is conferred in cis by the sequence and length of the triplet tract. Trans-acting factors also modulate TNR instability risk, on the basis of such evidence as parent-of-origin effects. To help identify trans-acting modifiers, a screen was performed to find yeast mutants with altered CTG.CAG repeat mutation frequencies. The RTG2 gene was identified as one such modifier. In rtg2 mutants, expansions of CTG.CAG repeats show a modest increase in rate, depending on the starting tract length. Surprisingly, contractions were suppressed in an rtg2 background. This creates a situation in a model system where expansions outnumber contractions, as in humans. The rtg2 phenotype was apparently specific for CTG.CAG repeat instability, since no changes in mutation rate were observed for dinucleotide repeats or at the CAN1 reporter gene. This feature sets rtg2 mutants apart from most other mutants that affect genetic stability both for TNRs and at other DNA sequences. It was also found that RTG2 acts independently of its normal partners RTG1 and RTG3, suggesting a novel function of RTG2 that helps modify CTG.CAG repeat mutation risk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.

A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functio...

متن کامل

Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.

Trinucleotide repeats can form secondary structures, whose inappropriate repair or replication can lead to repeat expansions. There are multiple loci within the human genome where expansion of trinucleotide repeats leads to disease. Although it is known that expanded repeats accumulate double-strand breaks (DSBs), it is not known which DSB repair pathways act on such lesions and whether inaccur...

متن کامل

Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae.

To examine the chromosomal stability of repetitions of the trinucleotide CAG, we have cloned CAG repeat tracts onto the 3' end of the Saccharomyces cerevisiae ADE2 gene and placed the appended gene into the ARO2 locus of chromosome VII. Examination of chromosomal DNA from sibling colonies arising from clonal expansion of strains harboring repeat tracts showed that repeat tracts often change in ...

متن کامل

MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice

Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show varia...

متن کامل

The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae

CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 162 2  شماره 

صفحات  -

تاریخ انتشار 2002